Synthesis of Azulenone Skeletons by Reaction of 2-Phenyl-2-acylketenes [RCO(Ph)C=C=O] with Alkynyl Ethers: **Mechanistic Aspects and Further Transformations**

Dean G. Brown,[†] Thomas R. Hoye,[†] and Ronald G. Brisbois*,[‡]

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, and Department of Chemistry, Hamline University, St. Paul, Minnesota 55104

Received October 20, 1997

A method is described for a mild and efficient synthesis of azulenone skeletons via the addition reactions of 2-phenyl-2-acylketenes with 1-alkynyl ethers. A mechanism is presented to account for both azulenone formation as well as the solvent and substrate dependency of a competitive pyrone formation. The azulenone rings have been subsequently transformed into both substituted azulenes or hydroazulenes by derivatization and/or decarboxylation of an angular carboxyl substituent or by hydrogenation.

Introduction

Reaction of diarylketenes 1 with alkynyl ethers 2 is known to produce azulenone derivatives 4.1 Previous work has focused primarily on the aromatic substituent effects (i.e. R_1 vs R_2) in the competing formation of postulated norcaradiene derivatives **3**,² which undergo ring-opening expansion to 4. The formation of norcaradiene derivatives 3 has been discussed as a symmetryallowed $[\pi_a^2 + \pi_a^2 + \pi_s^2]$ cycloaddition.^{1c,3} Despite the relative ease with which this tandem cycloaddition/ electrocyclic opening accesses azulenone derivatives, its synthetic potential appears to have gone largely unexplored.⁴ This is likely a function of the angular aryl moieties present in 4, which impose limits on the options available for further modification of the azulenone skeleton.

[†] University of Minnesota.

In the course of our investigations of acylketene/ alkynyl ether reactivity directed toward the synthesis of γ -pyrones,⁵ we have observed that arylacylketenes **5** react like diarylketenes (cf. 1) to yield azulenone derivatives 6 (Table 1). This result intrigued us because of the potentially greater synthetic versatility offered by the angular acyl substituent in 6 (vis-à-vis the aryl substituent present in 4). Herein we report our initial results on the scope of arylacylketene/alkynyl ether reactions, as well as various transformations of the azulenone products.

Results and Discussion

Substituent Effects in Ketene 5. At the outset of our studies, the series of ketenes 5a-c, derived from thermolysis of the diazoketones 7a-c,6 as well as the stable ketene acid chloride 5d⁷ were reacted with 1-methoxy-1-butyne (2a). The nature of the acyl moiety in 5 plays a critical role in controlling the efficiency of azulenone 6 formation (Table 1), which is always accompanied by one or more competing reactions. These include competitive pyrone formation and decarboxylation [e.g., to form PhCH₂PO(OMe)₂]. As judged by independent trapping experiments with methanol, ketenes 5a and 5b (entries 1 and 2) are the sole Wolff rearrangement products⁸ accompanying decomposition of **7a** and 7b. In the case of entry 3, however, 5c is one of two ketenes generated in approximately equal amounts because the migratory aptitudes for phenyl vs methyl are approximately equal.⁹ Ketene **5c** is the only one that can give rise to 6c. The increasing selectivity for azulenone formation vis-à-vis pyrone formation for 5c vs 5a (entries 3 vs 1) suggested that the selectivity for azulenone

(8) For characterization of ketene 5b, see: Tomioka, H.; Komatsu, K.; Shimizu, M. *J. Org. Chem.* 1992, *57*, 6216.
(9) Meier, H.; Zeller, K.-P. *Angew. Chem., Int. Ed. Engl.* 1975, *14*,

[‡] Hamline University.

 ^{(1) (}a) Nieuwenhuis, J.; Arens, J. F. *Rec. Trav. Chem.* **1958**, *77*, 761.
 (b) Vieregge, H.; Bos, H. J. T.; Arens, J. F. *Rec. Trav. Chem.* **1959**, *78*, 664.
 (c) Jenny, E. F.; Schenker, K.; Woodward, R. B. *Angew. Chem.* 1961, 73, 756

⁽²⁾ Teufel, H.; Jenny, E. F. Tetrahedron Lett. 1971, 21, 1769.

⁽³⁾ Direct evidence of norcaradienes derived from naphthylketenes and ethoxyacetylene has been reported: Wuest, J. D. *Tetrahedron* 1980, 36, Ž291.

^{(4) (}a) Barton, D. H. R.; Gardner, J. N.; Petterson, R. C.; Stamm, O. A. *J. Chem. Soc.* **1962**, 2708. (b) Druey, J.; Schenker, K.; Woodward, R. B. Helv. Chim. Acta 1962, 71, 600.

⁽⁵⁾ We have also studied the (formal) [4 + 2] cycloaddition reactions of nonaryl substituted acylketenes with alkynyl ethers to generate γ -pyrones. These results will be published elsewhere.

⁽⁶⁾ Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Commun. 1987, 17, 1709.

⁽⁷⁾ Nakanishi, S.; Butler, K. Org. Prep. Proc. Intl. 1975, 7, 155-158

^{*a*} Reactions were performed on a ca. 10–100 mg scale in a capped culture tube behind a blast shield at the indicated bath temperature. ^{*b*} As judged by diagnostic ¹H NMR (CDCl₃) signals for vinylic protons at 5.8–6.6 ppm and GC–MS data (t_R = 9.98 min) at 274 (6, M⁺), 201 (100, M⁺ – CO₂Et), 171 (9), and 115 (6). ^{*c*} No pyrone resonances were observed in the ¹H NMR spectrum of the crude product mixture for the reaction performed in CH₂Cl₂. The **6d**:α-pyrone ratio was 6:1 when the reaction was performed in benzene.

formation increases with greater electron-withdrawing ability of the acyl moiety. Therefore, we turned to the use of (chlorocarbonyl)phenylketene **5d**. Consistent with this hypothesis, **5d** gave the highest ratio of azulenone/ pyrone formation of any of the ketenes studied (entry 4). The 70% yield of **6d** and the mild reaction conditions (0 °C) render this reaction preparatively useful.¹⁰ All subsequent studies were therefore carried out with ketene **5d** and products derived therefrom.

Solvent Effects. Nearly all of the byproducts observed for the reactions of **5a**, **5c**, and **5d** with **2a** (Table 1) were either α - or γ -pyrones.⁵ We explored the solvent effect on the efficiency of formation of azulenone **8** visà-vis the α -pyrone **9** (Table 2) using (chlorocarbonyl)phenyl ketene (**5d**) and ethoxyacetylene (**2b**). The ratio of **8** to **9** can be modulated somewhat (i.e., by about a factor of 3) by the choice of solvent. Specifically, more polar solvents support the formation of **8** (entry 1), whereas less polar solvents suppress formation of **8** (entries 3 and 4). For substituted analogues of ethoxyacetylene (**2a**), the ratio of azulenone to pyrone formation is even greater (e.g., entry 4, Table 1), occasionally even to the exclusion of pyrone formation. Finally, the result

(10) Another example that demonstrates the variety of azulenone acid chlorides that can be prepared by this route is compound **6e** containing a functional side chain, which was prepared from the bromopentynyl ether **i** and **5d**. Once again, the analogous γ -pyrone was not observed (**6e**/pyrone > 19:1).

Formation							
Ph C ⁵⁰ + Cl 0 + 5d	$ \stackrel{H}{\underset{OEt}{\overset{CI}{\underset{OEt}{\overset{OO}{\underset{OE}{\overset{CI}{\underset{OE}{\overset{OO}{\underset{OE}{\overset{OI}{\underset{OE}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\underset{OE}{\overset{OI}{\underset{OE}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\overset{OI}{\underset{OE}{\underset{OE}{\overset{OI}{\underset{O}{\underset{O}{\underset{O}{\overset{O}{\underset{O}{\underset{O}{\underset{O}{\underset{O}{\underset{O}{\underset{O}{\underset{O}{\atopO}{\underset{O}{\atopO}{\underset{O}{\underset{O}{\atopO}{\underset{O}{\atopO}{\underset{O}{\atopO}{\atopO}{\underset{O}{\atopO}{\underset{O}{\atopO}{\underset{O}{{O}{\atopO}{{O}}{{{O}{{O}{{O}{{O}{{O}}{{O}{{O}{{O}}{{O}{{O}{{O}}{{O}{{O}{{O}}{{O}{{O}}{{O}{{O}{{O}}{{O}}{{O}{{O}}{{O}{{O}}{{O}}{{O}}}{{O}{{O}}}}}}}$	Ph + cl o c Et 9					
Entry	Solvent	8 :9ª					
1	CH ₂ Cl ₂	2.8 ^b					
2	Ph-CF ₃	2.5					
3	benzene	1.5					
4	cyclohexane	1.0					

Table 2. Solvent Effect on Azulenone vs α-Pyrone

^a As determined by ¹H NMR analysis. ^b 48% isolated yield of 8.

in entry 2 is notable because it adds to the repertoire of reactions for which Curran and co-workers have reported α, α, α -trifluorotoluene to be an adequate, higher boiling, less toxic substitute for dichloromethane.¹¹

Mechanism. As noted above, previous reports on diarylketene/alkynyl ether reactions have postulated formation of an intermediate norcaradiene derivative **3** formed via a symmetry-allowed $[\pi_a{}^2 + \pi_a{}^2 + \pi_s{}^2]$ cycloaddition.^{1c,3} Subsequent ring-opening leads to the azulenone products. Although our primary interest has been the exploration of synthetic aspects of these azulenone products **6**, the substituent (Table 1) and solvent

⁽¹¹⁾ Ogawa, A.; Curran, D. P. J. Org. Chem. 1997, 62, 450.

(Table 2) effects and the competing pathways to pyrone formation invite mechanistic speculation. Perhaps in the reactions of arylacylketenes **5** and alkynyl ethers **2** a stepwise rather than concerted process may be operating to lead to the norcaradiene precursor **3** (Scheme 1). We speculate that initial attack of **2** on **5** gives rise to zwitterionic intermediate **10**.

Rotamers of zwitterion **10** capable of cyclization to either azulenone (from **10a**) or pyrone (**10b**) products are considered in Scheme 1. Each can exist as two enolate geometric isomers (**O**-*Z* and **O**-*E*). Either **10a**(**O**-*Z*) or **10a**(**O**-*E*) could cyclize to norcaradiene intermediate **3**. γ -Pyrones **11** could arise directly via **10b**(**O**-*Z*) by intramolecular O-acylation. α -Pyrones **13** could arise from cyclobutenones **12**,¹² formed by C-acylation within **10b**.

A plausible argument can be offered to account for the observed solvent effects. Recall that azulenone formation was suppressed in highly nonpolar solvents (Table 2). Rotamers **10a**, the azulenone precursors, should have a larger dipole moment than **10b**, the pyrone precursors. Thus, the equilibrium population of **10a** relative to **10b** should be higher in methylene chloride than in, e.g., cyclohexane, consistent with the observed product ratios (entries 1 vs 4).

Consider the effect of changing the substituent \mathbb{R}^5 in ketene 5. The most electron-withdrawing chlorine atom in 5d resulted in the greatest preference for the norcaradiene/azulenone pathway compared with the ethoxy and methyl substituents present in 5a and 5c (Table 1). The nucleophilicity of the enolate-like character in zwitterions 10 is attenuated when $\mathbb{R}^5 = \mathbb{C}$ l. Therefore, *O*-acylation of 10b(O-*Z*) to give γ -pyrone 11 as well as *C*-acylation of 10b to give cyclobutenone/ α -pyrone 12/13 should be suppressed. On the other hand, cyclization of 10a to 3 is initiated by intramolecular, electrophilic acylation of the phenyl ring, which should be less affected by the electronic character of the substituent $R.^5$ In other words, cyclization of **10a** to **3** would be expected to occur at more or less similar rates for each of the various R^5 groups. The presence of the chlorine atom therefore is envisioned to slow pyrone formation more than azulenone formation, consistent with the observed trend in substituent effects.

Reactions of Azulenones 6. We have studied three types of reactions that transform azulenones **6** into products of further interest. These involve substitution of the acid chloride at C(8a), deacylation of the COCl group, and some selective hydrogenation reactions of alkenes in the cycloheptatriene moiety.

The acid chloride in azulenones **6** was reacted with alcohols and amines to give the corresponding ester and amide derivatives (Table 3). This could be done either starting from isolated **6** (entry 1) or, more conveniently, in a one-pot procedure in which **5d** is reacted sequentially with the appropriate alkynyl ether and trapping nucleophile (entries 2–6). A single-crystal X-ray structure of azulenone **14f** was obtained, providing confirmation of the core skeletal structure of azulenones **6** and **14**.¹³ Methyl ester **14a** was the sole product isolated upon methanolysis of **6d** using triethylamine as the basic catalyst. However, when Hünig's base was used, the reaction solution took on an intense dark blue color. The azulene **15** was isolated as a minor product accompanying

⁽¹³⁾ The authors have deposited atomic coordinates for **14f** with the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U. K.

⁽¹²⁾ For examples of cyclobutenones formed via alkynyl ethers and ketenes see: (a) Wasserman, H. H.; Piper, J. U.; Dehmlow, E. V. *J. Org. Chem.* **1973**, *38*, 1451. (b) Danheiser, R. L.; Gee, S. K.; Sard, H. *J. Am. Chem. Soc.* **1982**, *104*, 26.

Esters and Annues								
CI	$ \begin{bmatrix} C^{2} & 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} R^{3} \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} R^{3} \\ 0 \\ 0$	- [$\begin{array}{c} CI \\ Ba \\ Ba \\ CR^{3} \\ CR^{4} \\ Ba \\ CR^{4} \\ Ba \\ CR^{4} $	H H he e				
5d 2		6d-f		14a-f				
Entry	R ₃	R ₄	R ₅	Product	% Yield			
1	Et	Me	MeO	14a	65			
2	H ₃ C(CH ₂) ₂	Ме	MeO	14b	58			
3	Ph(CH ₂) ₃	Ме	MeO	14c	35			
4	Н	Et	MeO	14d	25			
5	Et	Me	p-NO2PhCH2O	14e	27			
6	Et	Me	<i>p</i> -BrPhNH	14f	35			

Table 3. Preparation of 8a-Substituted Azulenone Esters and Amides

14a. This intriguing result demonstrated the potential for mild removal of the angular acyl moiety in azulenones **6**, rendering 1,3-hydroxy azulene derivatives accessible in two steps from readily available precursors.

Initial attempts to deacylate azulenones **6** and obtain free 1-hydroxyazulenes by a simple hydrolysis/decarboxylation strategy were unsuccessful. Although dramatic color changes rapidly accompanied the reaction of **6e** or **8** with water, only the *coupled* azulene/azulenone products **16a** and **16b** were isolated. We next conducted the

deacylation of **6** in the presence of trapping agents for the transient 1-hydroxyazulene intermediates that are implicated by the formation of products **16**. Use of DMAP/acetic anhydride (5 equiv) provided 1-acetoxy-3alkoxyazulenes **17a** and **17b** as the predominant prod-

ucts. These results demonstrate that 1-acetoxy-3alkoxyazulene derivatives **17** are indeed accessible, in reasonable yields, in two steps from readily available starting materials.

As demonstrated by Barton et al.,⁴ azulenones can be selectively hydrogenated to various hydroazulenone analogues. Similarly, we have reduced **14a** by catalytic hydrogenation over 10% palladium on carbon to give the hydroazulenones **18a** and **19a** in a 2:1 ratio. The relative

stereochemistry of the ring fusion was assigned by comparing the experimentally determined coupling constants for H(3a) with calculated values. Thus, a Monte Carlo based conformational search using the MM2* force field as implemented in MacroModel¹⁴ (version 6.0) was used to generate a conformer family containing all geometries within 50 kJ/mol of the global minimum for each of the diastereomers. The Boltzmann weighted, calculated, vicinal coupling constants for H(3a) matched well the experimental values **[18a**: $J_{3a/4\alpha}$ (calc vs exp) = 5.3 vs 6.0 Hz and $J_{3a/4\beta}$ (calc vs exp) = 11.3 vs 11.5 Hz. **19a**: $J_{3a/4\alpha}$ (calc vs exp) = 10.3 vs 9.2 Hz and $J_{3a/4\beta}$ (calc vs exp) = 2.1 vs 2.7 Hz]. The analogue **14d**, which lacks a substituent at C(2), was similarly reduced and also gave the hexahydro azulenones 18b and 19b, this time in a 3:1 ratio. On the basis of these and related¹⁵ results, this methodology could serve as a convenient access to hydroazulenone natural products skeletons.

Experimental Section

Materials. CH_2Cl_2 was distilled from CaH_2 , diethyl ether from sodium benzophenone. All reaction vessels were flamedried under vacuum and back-filled with nitrogen, and all reactions were carried out under a N_2 atmosphere. All diazo

⁽¹⁵⁾ In one instance, when the hydrogenation was carefully monitored, the tetrahydroazulenone ii was cleanly produced, implying that the disubstituted alkenes are reduced quickly, the trisubstituted C(3a)-C(4) alkene slowly, and the C(2)–C(3) vinylogous ester alkene very slowly (if at all). An additional transformation of **18b/19b** is also relevant. Gassman hydrolysis (Gassman, P. G.; Schenk, W. N. *J. Org. Chem.* **1977**, *42*, 918) was accompanied by decarboxylation to give **iii** as a single diastereomer. **ii**: ¹H NMR (CDCl₃, 200 MHz) δ 1.19-1.23 (m, 2H), 1.45 (t, 3H, *J* = 7.0 Hz), 1.76-1.82 (m, 2H), 1.90–1.94 (m, 2H), 5.37 (s, 1H), and 6.59 (dd, 1H, *J* = 8.9, and 5.0 Hz); LRMS (EI: ¹H NMR (300 MHz, CDCl₃) δ 1.22–1.26 (m, 2H), 1.32–1.36 (m, 2H), 1.40 (t, 3H, *J* = 7.0 Hz), 1.52–1.69 (m, 4H), 1.96–2.00 (m, 2H), 2.63 (ddd, 1H, *J* = 10.5, 6.0, 3.5 Hz), 2.98 (dddd, 1H, *J* = 10.5, 7.0, 3.7, 1.3 Hz), 3.96–4.02 (m, 2H), 5.26 (s, 1H); IR (CDCl3) 1711 (s), 1224 (m); MS (EI, 70 eV): *m/z* (rel int) 194 (30, M⁺), 179 (30), 151 (25), 139 (100), 111 (24).

⁽¹⁴⁾ Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. *J. Comput. Chem.* **1990**, *11*, 440.

compounds were prepared using *p*-acetamidobenzenesulfonyl azide as the diazo transfer reagent following the protocol of Davies (Et₃N, MeCN, 0 °C to rt, ~4 h).⁶ Each has been prepared previously by alternative methods: ethyl 2-diazoac-etoacetate (**7a**).¹⁶ dimethyl (1-diazo-2-oxo-2-phenyl)ethylphosponate (**7b**).¹⁷ and 2-diazo-1-phenyl-1,3-butanedione (**7c**).¹⁸

5-Bromo-1-ethoxy-1-pentyne.¹⁹ To a cold (0 °C) stirred solution of ethoxyacetylene (7.13 mmol, 0.500 g of a 50 wt %/wt solution in hexanes) in THF was slowly added *n*-BuLi (7.13 mmol, 2.97 mL, 2.4 M). After 30 min, 1,3-dibromopropane (1.43 g, 0.73 mL, 7.13 mmol, purified by passing through Al₂O₃) was added. This solution was allowed to warm to room temperature and stirred overnight. Solvent was removed in vacuo, and the product purified by silica gel chromatography (SiO₂, 95/5 hexanes/ethyl acetate; $R_f = 0.80$ in 95/5 hexanes/ ethyl acetate and 0.35 in hexanes) and then again with hexanes as the eluent (colorless oil, 0.420 g, 31%): ¹H NMR (300 MHz, CDCl₃) δ 1.35 (t, 3H, J = 7.0 Hz), 2.00 (tt, 2H, J = 7.0, 6.6 Hz), 2.29 (t, 2H, J = 6.6 Hz), 3.55 (t, 2H, J = 6.6 Hz), and 4.06 (q, 2H, J = 7.0 Hz); IR (neat) 2258 (s) and 1224 (s) cm⁻¹.

1-Methoxy-5-phenyl-1-pentyne.²⁰ A flame-dried three neck flask was fitted with a glass-paddled mechanical stirrer and oil bubbler and charged with freshly ground Fe(NO₃)₃. $9H_20$ (~500 mg). The flask was cooled (-78 °C) and anhydrous ammonia was condensed (~300 mL). Freshly shaved sodium (5.97 g, 26 mmol) was slowly added over 30 min. After sodium amide was formed (~4 h, indicated by color change from blue to gray), chloroacetaldehyde dimethyl acetal (10.0 g, 80 mmol, freshly distilled) was added via syringe, and the mixture was stirred an additional 90 min. To this was added 1-bromo-3phenylpropane (14.33 g, 70 mmol) and the suspension stirred for 4 h. The flask was removed from the cold bath and the mixture was carefully quenched with saturated NH₄Cl (50 mL). Pentane (300 mL) was added followed by an additional portion of saturated NH₄Cl (150 mL). The pentane layer was removed, washed with brine, and dried over MgSO₄. Removal of pentane by careful distillation led to a yellow oil. Bulb-tobulb distillation (bath temp = 60-100 °C at 12 mmHg) of this material led to the crude alkynyl ether. Further purification by flash chromatography (SiO₂, 1% ethyl acetate in hexanes) gave pure 1-methoxy-5-phenyl-1-pentyne (4.2 g, 32%): ¹H NMR (CDCl₃, 200 MHz) δ 1.80 (tt, 2H, J = 6.9 Hz), 2.16 (t, 2H, J = 6.9 Hz), 2.73 (t, 2H, J = 7.0 Hz), 3.82 (s, 3H), 7.17-7.31 (m, 5H); 13 C NMR (CDCl₃, 50.32 MHz) δ 16.58, 31.19, 34.76, 35.87, 65.33, 91.37, 125.71, 128.25, 128.48, 141.95; IR (neat) 3026 (m), 2941 (s), 2272 (s), 1244 (s) cm⁻¹. Anal. Calcd for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.70; H, 7.96.

Dimethyl (±)-2-Ethyl-1,8a-dihydro-3-methoxy-1-oxo-8a-azulenephosphonate (6b). Diazophosphonate 7b (0.07 g, 0.31 mmol) was heated with 1-methoxy-1-butyne (2a, 0.100 g, 0.87 mmol) in CH₂Cl₂ (2 mL) at 110 °C for 5 h. Solvent was removed in vacuo, and products were purified by flash chromatography (SiO₂, ethyl acetate, $R_f = 0.25$) to give **6b** as a yellow oil (0.009 g, 10%): ¹H NMR (CDCl₃, 500 MHz) δ 1.14 (t, 3H, J = 7.5 Hz), 2.50 (dq, 1H, J = 14.0, 7.5 Hz), 2.53 (dq, 1H, J = 14.0, 7.5 Hz), 3.70 (d, 3H, J = 11.0 Hz), 3.72 (d, 3H, J = 11.0 Hz), 5.79 (dd, 1H, J = 10.3, 5.0 Hz), 6.13–6.18 (m, 1H), 6.29–6.35 (m, 2H), 6.57 (dd, 1H, J = 7.8, 2.5 Hz); IR (CDCl₃) 1734 (s), 1696 (s), 1592 (s), 1035 (m) cm⁻¹; HRMS (EI) calcd for C₁₅H₁₉O₅P 310.0971, found 310.0975.

(±)-1-(8a*H*)-2-Ethyl-3-methoxy-8a-(1-oxoethyl)azulenone (6c). 2-Diazobenzoylacetone (7c, 0.100 g, 0.53 mmol) was heated with 1-methoxy-1-butyne (2a, 0.100 g, 1.06 mmol) in CH₂Cl₂ (2 mL) at 110 °C for 5 h. Solvent was removed in vacuo and the residue was purified by MPLC (80/20 hexanes/ ethyl acetate) to give **6c** as a yellow oil (0.025 g, 20%): ¹H NMR (500 MHz, CDCl₃) δ 1.07 (t, 3H, J= 7.5 Hz), 2.19 (s, 3H), 2.46 (q, 2H, J= 7.5 Hz), 4.22 (s, 3H), 6.14 (d, 1H, J= 10.0 Hz), 6.31 (dd, 1H, J= 10, 6.5 Hz), 6.34 (dd, 1H, J= 11.0, 6.5 Hz), 6.44 (dd, 1H, J= 11.0, 6.5 Hz), 6.66 (d, 1H, J= 6.5 Hz); ^{13}C NMR (CDCl₃, 125.69 MHz) δ 14.81, 16.71, 26.39, 58.84, 69.38, 118.76, 119.63, 127.87, 128.14, 129.61, 130.62, 133.18, 174.03, 196.97, 200.25; IR (CDCl₃) 1719 (m), 1686 (s), 1585 (s) cm^{-1}. Anal. Calcd for C₁₅H₁₆O₃: C; 73.75, H: 6.60. Found: C, 73.74; H: 6.57.

(±)-2-Ethyl-1,8a-dihydro-3-methoxy-1-oxo-8a-azulencarboxylic Acid Chloride (6d). To a cold (0 °C) stirred solution of chloroketene 5d⁷ (0.075 g, 0.415 mmol) in CH₂Cl₂ (5 mL) was added 1-methoxy-1-butyne (2a, 0.052 g, 0.623 mmol) in CH_2Cl_2 (5 mL) over 30 min. The mixture was allowed to stir at room temperature for 5 h, at which time the solution had turned slightly green. The solvent was removed in vacuo and **6d** was isolated by column chromatography (SiO₂, $R_f =$ 0.30 in 70/30 hexanes/ethyl acetate) as a yellow oil (0.109 g, 70%): ¹H NMR (CDCl₃, 300 MHz) δ 1.10 (t, 3H, J = 7.5 Hz), 2.50 (q, 2H, J = 7.5 Hz), 4.25 (s, 3H), 5.92 (d, 1H, J = 9.9 Hz), 6.40-6.57 (m, 3H), 6.69 (d, 1H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 75.4 MHz) δ 14.54, 16.85, 59.11, 69.13, 119.96, 120.40, 126.38, 129.06, 130.15, 131.26, 132.12, 169.13, 174.34, 194.32; IR (neat) 1795 (s), 1699 (m), 1584 (s) cm⁻¹; HRMS calcd for C₁₄H₁₃-ClO₃ 264.0553, found 264.0563. Anal. Calcd for C₁₄H₁₃ClO₃: C, 63.52; H, 4.95. Found: C, 63.68; H, 5.05.

(±)-3-Ethoxy-1,8a-dihydro-1-oxo-8a-azulenecarboxylic Acid Chloride (8) and 6-Chloro-4-ethoxy-5-phenyl-2Hpyran-2-one (9). To a cold (0 °C) stirred solution of chloroketene 5d (0.179 g, 0.99 mmol) in CH₂Cl₂ (5 mL) was added ethoxyacetylene (0.166 mL of a 50 wt %/wt solution in hexanes, 1.1 mmol) in CH₂Cl₂ (5 mL) over 30 min. The mixture was allowed to stir at room temperature for 5 h, at which time the solution had turned slightly green. The solvent was removed in vacuo and purification by column chromatography (SiO₂, $R_f = 0.25$ in 70/30 hexanes/ethyl acetate) gave, in order of elution, 9 (0.042 g, 17%) and 8 (0.128 g, 48%) as yellow oils. 9: ¹H NMR (CDCl₃, 300 MHz) δ 1.46 (t, 3H, J = 7.0 Hz), 4.28 (q, 2H, J = 7.0 Hz), 5.59 (s, 1H), 7.28–7.37 (m, 5H); ¹³C NMR (CDCl₃, 125.69 MHz) & 14.27, 65.87, 85.62, 115.71, 128.18, 128.25, 130.27, 132.35, 152.05, 159.18, 161.82; IR (KBr) 1728 (s), 1617 (m), 1544 (s), 1332 (s) cm⁻¹. Anal. Calcd for C₁₃H₁₁-ClO₃: C, 62.29; H, 4.42. Found: C, 61.51; H, 4.42. 8: ¹H NMR (200 MHz, CDCl₃) δ 1.50 (t, 3H, J = 7.0 Hz), 4.15–4.29 (m, 2H), 5.41 (s, 1H), 6.03 (d, 1H, J = 9.4 Hz), 6.48-6.58 (m, 3H), 6.81–6.84 (m, 1H); ¹³C NMR (125.69 MHz, CDCl₃) δ 14.14, 68.52, 70.14, 103.01, 121.29, 126.67, 128.76, 129.93, 130.53, 133.26, 169.24, 180.08, 192.92; IR (neat) 1792 (m), 1694 (s), 1567 (s), cm⁻¹. The methyl ester derivative **14d** (vide infra) gave satisfactory HRMS data.

(±)-2-(3-Bromopropyl)-3-ethoxy-1,8a-dihydro-1-oxo-8aazulencarboxylic Acid Chloride (6e). To a cold (0 °C) stirred solution of chloroketene 5d (0.123 g, 0.684 mmol) in CH₂Cl₂ (5 mL) was added 1-ethoxy-5-bromo-1-pentyne (0.156 g, 0.82 mmol) in CH₂Cl₂ (5 mL) over 30 min. The mixture was allowed to stir at room temperature for 5 h, at which time the solution had turned slightly green. MPLC (80/20 hexanes/ ethyl acetate, $R_f = 0.25$ in 1:1 hexanes/ ethyl acetate) provided **6e** (0.127 g, 50%) as a yellow oil: ¹H NMR (CDCl₃, 300 MHz) δ 1.48 (t, 3H, J = 7.0 Hz), 2.08–2.11 (m, 2H), 2.53–2.72 (m, 2H), 3.44 (t, 2H, J = 6.2 Hz), 4.51–4.63 (m, 2H), 5.90 (d, 1H, J = 9.3 Hz), 6.44–6.49 (m, 1H), 6.49–6.59 (m, 3H), 6.76 (d, 1H, J = 5.8 Hz); ¹³C NMR (CDCl₃, 125.69 MHz) δ 13.92, 15.34, 22.20, 33.27, 61.67, 67.70, 115.39, 116.75, 118.56, 118.70, 126.87, 128.45, 131.86, 135.41, 167.25, 174.06, 197.68; IR $(CDCl_3)$ 1733 (s), 1694 (m), 1583 (s) cm⁻¹; HRMS (EI) calcd for C₁₆H₁₆BrCO₂ (M⁺ loss of ClCO) 309.0335, found 309.0333.

Methyl (\pm)-2-Ethyl-1,8a-dihydro-3-methoxy-1-oxo-8aazulenecarboxylate (14a). To a cold (0 °C) stirred solution of azulene 6d (0.80 g, 0.45 mmol) in CH₂Cl₂ (5 mL) was added MeOH (0.015 g, 0.49 mmol), followed by DMAP (0.050 g, 0.40 mmol). This solution was stirred at room temperature for an additional 90 min. The solvents were then removed in vacuo, and the resultant green oil was subjected to column chroma-

⁽¹⁶⁾ Saba, A. Synth. Commun. 1994, 24, 695.

⁽¹⁷⁾ Regitz, M.; Martin, R. Tetrahedron 1985, 41, 819.

 ⁽¹⁸⁾ Regitz, M.; Liedhegener, A. *Chem. Ber.* **1966**, *99*, 3128.
 (19) See Pons, J.-M.; Kocienski, P. *Tetrahedron Lett.* **1989**, *30*, 1833

⁽¹⁹⁾ See Pons, J.-M.; Kocienski, P. *Tetranedron Lett.* **1989**, *30*, 183. for a general procedure for alkylation of lithioethoxyacetylene.

⁽²⁰⁾ For a general procedure for in situ generation and alkylation of alkoxy acetylides, see: Newman, M. S.; Geib, J. R.; Stalick, W. M. *Org. Prep. Proc. Intl.* **1972**, *4*, 89.

tography (R_f = 0.25 in 70/30 hexanes/ethyl acetate) to give **14a** as a yellow oil (0.076 g, 65%): ¹H NMR (CDCl₃, 300 MHz) δ 1.05 (t, 3H, J = 7.5 Hz), 2.49 (q, 2H, J = 7.5 Hz), 3.57 (s, 3H), 4.19 (s, 3H), 5.95 (d, 1H, J = 10.0 Hz), 6.33 (dd, 1H, J = 10.0, 5.5 Hz), 6.41 (dd, 1H, J = 10.5, 6.0 Hz), 6.44 (dd, 1H, J = 11.0, 5.5 Hz), 6.60 (d, 1H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 75.4 MHz) δ 14.8, 16.9, 52.9, 59.1, 61.5, 118.6, 120.1, 127.1, 128.7, 128.9, 131.8, 131.9, 168.8, 173.8, 197.3; IR (neat) 1746 (s), 1696 (s), 1585 (s), 1362 (s), 1340 (s), 1232 (s) cm⁻¹; HRMS (EI) calcd for C₁₅H₁₆O₄ 260.1048, found 260.1028.

Methyl (±)-1,8a-Dihydro-3-methoxy-1-oxo-2-propyl-8aazulenecarboxylate (14b). To a cold (0 °C) stirred solution of chloroketene 5d (0.400 g, 2.2 mmol) in CH₂Cl₂ (15 mL) was added 1-methoxy-1-pentyne (0.281 g, 2.8 mmol) in CH_2Cl_2 (5 mL) over 30 min. The mixture was allowed to stir at room temperature for 5 h, at which time dry MeOH was added (0.073 g, 0.092 mL, 2.3 mmol). The mixture was cooled again (0 °C), and to this solution was added pyridine (0.183 g, 0.187 mL, 2.3 mmol) followed by DMAP (ca. 20 mg). The mixture was stirred at room temperature for an additional 90 min. The volatiles were then removed in vacuo, and the resultant green oil was subjected to column chromatography ($R_f = 0.25$ in 70/ 30 in hexanes/ethyl acetate) to give 14b as a yellow oil (0.35 g, 58%): ¹H NMR (CDCl₃, 300 MHz) δ 0.92 (t, J = 3H, 7.3 Hz), 1.42-1.58 (m, 2H), 2.41-2.46 (m, 2H), 3.58 (s, 3H), 4.18 (s, 3H), 5.94 (d, 1H, J = 10.0 Hz), 6.33 (dd, 1H, J = 10.0, 5.0 Hz), 6.41–6.48 (m, 2H), 6.50 (d, 1H, J = 6.0 Hz); ¹³C NMR (CDCl₃, 75.47 MHz) & 13.83, 23.58, 25.19, 52.82, 58.59, 61.16, 118.42, 118.64, 126.95, 128.54, 128.75, 131.68, 131.90, 168.05, 174.25, 197.44; IR (neat) 1746 (s), 1695 (s), 1585 (s), 1365 (s), 1335 (s), 1232 (s) cm⁻¹. Anal. Calcd for C₁₆H₁₈O₄: C, 71.31; H, 6.34. Found: C, 71.11; H, 6.44.

Methyl (±)-1,8a-Dihydro-2-(3-phenylpropyl)-3-methoxy-1-oxo-8a-azulenecarboxylate (14c). To a cold (0 °C) stirred solution of chloroketene 5d (0.200 g, 1.10 mmol) in CH₂-Cl₂ (15 mL) was added 1-methoxy-5-phenyl-1-pentyne (0.270 g, 1.55 mmol) in CH₂Cl₂ (5 mL) over 30 min. The mixture was allowed to stir at room temperature for 5 h, at which time dry MeOH was added (0.070 g, 2.2 mmol). The mixture was cooled again (0 °C), and to this solution was added DMAP (0.161 g, 1.31 mmol). The mixture was stirred at room temperature for an additional 90 min. The volatiles were then removed in vacuo, and the resultant green oil was subjected to column chromatography ($R_f = 0.25$ in 70/30 in hexanes/ethyl acetate) to give 14c as a yellow oil (0.135 g, 35%): ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 1.81 \text{ (m, 2H)}, 2.47 \text{ (t, 2H, } J = 8.0 \text{ Hz}),$ 2.64 (t, 2H, J = 7.5 Hz), 3.58 (s, 3H), 4.01 (s, 3H), 5.94 (d, 1H, J = 10.0 Hz), 6.32 (dd, 1H, J = 5.5, 10.0 Hz), 6.42 (dd, 1H, J= 10.0, 5.5 Hz), 6.45 (dd, 1H, J = 10.0, 6.0 Hz), 6.58 (d, 1H, J = 5.5 Hz), 7.16-7.25 (m, 5H); ¹³C NMR (125.69 MHz, CDCl₃) δ 22.78, 31.68, 35.46, 52.82, 58.79, 61.13, 118.28, 118.54, 125.86, 126.88, 128.30, 128.40, 128.55, 128.70, 131.78, 131.79, 141.68, 167.96, 174.23, 197.39; IR (CDCl₃) 1746 (s), 1694 (s), 1584 (s), 1231 (m) cm⁻¹. Anal. Calcd for $C_{22}H_{22}O_4$: C, 75.41; H, 6.33. Found: C, 74.93; H, 6.24.

Methyl (±)-3-Ethoxy-1,8a-dihydro-1-oxo-8a-azulenecarboxylate (14d). To a cold (0 °C) stirred solution of chloroketene $\mathbf{5d}$ (0.778 g, 4.3 mmol) in CH_2Cl_2 (50 mL) was added ethoxyacetylene (0.391 g of a 50 wt %/wt solution in hexanes, 5.59 mmol) in CH₂Cl₂ (5 mL) over 30 min. The mixture was stirred at room temperature for 5 h, at which time dry MeOH was added (0.206 g, 6.45 mmol MeOH), followed by Et₃N (6.45 mmol, 0.652 g, 0.898 mL, 1.5 equiv) and DMAP (ca. 50 mg). This was stirred at room temperature for an additional 90 min. The volatiles were then removed in vacuo, and the resultant green oil was subjected to column chromatography ($R_f = 0.45$ in 70/30 hexanes/ethyl acetate) to give 14d as a yellow solid (mp 116-118 °C, 0.250 g, 25%): ¹H NMR (CDCl₃, 200 MHz) δ 1.47 (t, 3H, J = 7.0 Hz), 3.61 (s, 3H), 4.17-4.21 (m, 2H), 5.37 (s, 1H), 6.00 (d, 1H, J = 9.8 Hz), 6.35–6.48 (m, 3H), 6.90 (d, 1H, J = 5.0 Hz); ¹³C NMR (75.42 MHz, CDCl₃) & 14.19, 52.39, 62.27, 68.11, 102.74, 119.95, 127.15, 128.38, 128.44, 131.0, 132.85, 167.93, 179.86, 196.23; IR (KBr) 1722 (m), 1689 (s), 1561 (s), 1031 (m) cm^{-1} ; HRMS (EI) calcd for C₁₄H₁₄O₄ 246.0892, found 246.0889.

(4-Nitrophenyl)methyl (±)-2-Ethyl-1,8a-dihydro-3-methoxy-1-oxo-8a-azulenecarboxylate (14e). To a cold (0 °C) stirred solution of chloroketene 5d (0.350 g, 1.93 mmol) was added 1-methoxy-1-butyne (2a, 0.163 g, 1.93 mmol) in CH2-Cl₂ (5 mL) over 30 min. The mixture was stirred at room temperature for 5 h, at which time *p*-nitrobenzyl alcohol (0.236 g, 1.54 mmol) in CH₂Cl₂ (5 mL) was added, followed by DMAP (0.235 g, 1.93 mmol). This was stirred at room temperature for 3 h and the solvent removed in vacuo. The black residue was subjected to chromatography (SiO₂, 80/20 ethyl acetate/ hexanes, $R_f = 0.15$ in 75/25 hexanes/ethyl acetate) to give **14e** (0.200 g, 27%) as a yellow solid (mp 135-137 °C): ¹H NMR (CDCl₃, 300 MHz) δ 1.07 (t, 3H, J = 7.5 Hz), 2.49 (q, 2H, J =7.5 Hz), 4.20 (s, 3H), 5.13 (s, 2H), 5.97 (d, 1H, J = 9.0 Hz), 6.34-6.41 (m, 3H), 6.61 (d, 1H, 6.0 Hz), 7.37 (d, 2H, J = 8.6Hz), 8.14 (d, 2H, J = 8.6 Hz); ¹³C NMR (75.47 MHz, CDCl₃) δ 14.38, 16.80, 58.94, 60.97, 65.49, 118.75, 119.92, 123.62, $126.73,\,127.72,\,128.71,\,128.93,\,131.57,\,143.17,\,147.52,\,167.19,$ 174.04, 196.83; IR (CDCl₃) 1739 (s), 1695 (s), 1585 (s), 1524 (s), 1348 (s) cm⁻¹. Anal. Calcd for C₂₁H₁₉NO₆: C: 66.14, H: 5.02, N: 3.67. Found: C, 66.05; H, 5.23, N, 3.49.

N-(4-Bromophenyl) (±)-2-Ethyl-1,8a-dihydro-3-methoxy-1-oxo-8a-azulenecarboxamide (14f). To a cold (0 °C) stirred solution of chloroketene 5d (0.300 g, 1.63 mmol) was added 1-methoxy-1-butyne (2a, 0.139 g, 1.66 mmol) in CH₂-Cl₂ (5 mL) over 30 min. The mixture was stirred at room temperature for 5 h, at which time 4-bromoaniline (0.236 g, 1.54 mmol) in CH_2Cl_2 (5 mL) was added, followed by Et_3N (0.254 mL, 0.184 g, 1.82 mmol) and DMAP (0.060 g, 0.49 mmol). This mixture was stirred at room temperature for 3 h and the solvent removed in vacuo. The residue was subjected to chromatography (SiO₂, 70/30 ethyl acetate/hexanes, $R_f =$ 0.15 in 75/25 hexanes/ethyl acetate) to give 14f as a light yellow solid [0.230 g, 35%, needles, mp 135-137 (CH₂Cl₂/pentane)]: ¹H NMR (300 MHz, CDCl₃) δ 1.10 (t, 3H, J = 7.5 Hz), and 2.50 (q, 2H, J = 7.5 Hz), 4.23 (s, 3H), 6.05-6.09 (m, 1H), 6.37-6.39 (m, 1H), 6.52-6.61 (m, 1H), 6.77 (d, 1H, J = 6.6 Hz), 7.35–7.78 (m, 5H), 7.78 (s, 1H); ¹³C NMR (300 MHz, CDCl₃) & 14.84, 16.77, 58.97, 68.92, 109.97, 116.74, 119.45, 122.16, 126.03, 129.73, 130.51, 130.55, 131.76, 132.07, 136.81, 164.28, 174.26, 199.05; IR (CDCl₃) 1687 (s), 1581 (s), 1516 (s) cm⁻¹; HRMS (CI) calcd for $C_{20}H_{18}BrNO_3 [M + H]^+$ 400.0548, found 400.0554.

2-(3-Bromopropyl)-3-ethoxy-1-azulenyl (±)-2-(3-Bromopropyl)-3-ethoxy-1,8a-dihydro-1-oxo-8a-azulenecarboxylate (16a). To a cold (0 °C) stirred solution of azulenone acid chloride 6e (0.032 g, 0.08 mmol) in CH2Cl2 (10 mL) was added Et₃N (0.015 mL, 0.010 g, 0.10 mmol) and DMAP (0.001 g, 0.008 mmol). The mixture was stirred for 5 min and $H_{\rm 2}O$ (0.015 mL, 0.86 mmol) added. After several minutes the reaction color turned deep blue. The mixture was stirred at room temperature for 5 h, the volatiles were removed in vacuo, and the product was purified by chromatography (SiO₂, $R_f =$ 0.30 in 70/30 hexanes/ethyl acetate) to give 16a as a blue oil (0.019 g, 70%): ¹H NMR (CDCl₃, 300 MHz) δ 1.41 (t, 3H, J = 6.9 Hz), 1.47 (t, 3H, J = 6.9 Hz), 2.10–2.15 (m, 4H), 2.67– 2.77 (m, 3H), 3.38 (t, 2H, J = 6.7 Hz), 3.45 (t, 2H, J = 6.5 Hz), 3.71-3.73 (m, 1H), 4.09 (q, 2H, J = 6.9 Hz), 4.55-4.58 (m, 2H), 6.09 (d, 1H, J = 9.8 Hz), 6.44–6.47 (m, 1H), 6.61 (m, 2H), 6.77-6.81 (m, 1H), 6.86 (t, 2H, J = 9.7 Hz), 7.38 (t, 1H, J = 9.8 Hz), 7.71 (d, 1H, J = 9.7 Hz), 8.14 (d, 1H, J = 9.6 Hz).²¹

3-Ethoxy-1-azulenyl (±)-3-Ethoxy-1,8a-dihydro-1-oxo-8a-azulenecarboxylate (16b). To a cold (0 °C) stirred solution of azulenone acid chloride **8** (0.070 g, 0.27 mmol) in CH_2Cl_2 (10 mL) was added H_2O (0.010 g, 0.55 mmol). The mixture was stirred for 20 min, followed by the addition of

⁽²¹⁾ Upon GC-MS analysis, this compound underwent thermal cleavage to a smaller fragment to which we assign structure **iv** on the basis of the its mass spectral data: LRMS 228 (35), 199 (100), 171 (83), 115 (24).

Et₃N (0.034 g, 0.046 mL, 0.33 mmol) and DMAP (ca. 5 mg). After several minutes the reaction color turned deep blue. The mixture was stirred at room temperature for 5 h, the volatiles were removed in vacuo, and the product was purified by chromatography (SiO₂, 80/20 hexanes/ethyl acetate, $R_f = 0.25$ in 70/30 hexanes/ethyl acetate) to give 16b as a blue oil (0.026 g, 45%): ¹H NMR (CDCl₃, 500 MHz) δ 1.43 (t, 3H, J = 7.0 Hz), 1.50 (t, 3H, J = 7.0 Hz), 4.14 (q, 2H, J = 7.0 Hz), 4.19–4.34 (m, 2H), 5.44 (s, 1H), 6.19 (d, 1 \hat{H} , J = 10.0 Hz), 6.48 (dd, 1H, J = 10.0, 5.5 Hz), 6.56-6.61 (m, 2H), 6.64 (t, 1H, J = 9.5 Hz), 6.83 (dd, 1H, J = 5.0, 2.5 Hz), 7.14 (s, 1H), 7.27 (t, 2H, J = 10.0 Hz), 7.78 (d, 1H, J = 9.5 Hz), 8.12 (d, 1H, J = 9.0 Hz); $^{13}\mathrm{C}$ NMR (CDCl₃, 125.69 MHz) δ 14.19, 14.95, 62.48, 66.44, 68.21, 99.98, 109.26, 119.10, 119.17, 119.56, 120.22, 121.71, 127.13, 128.66, 128.80, 131.00, 133.10, 133.75, 134.15, 139.86, 140.50, 145.06, 165.80, 179.95, 195.83; IR (CDCl₃) 1745 (m), 1695 (s), 1565 (s), 1032 (m) cm⁻¹; UV [EtOH, λ_{max} (log ϵ)] 222 (3.4), 240 (4.13), 286 (4.28), 360 (3.49), and 368 (3.41) nm; HRMS (FAB) calcd for C₂₅H₂₂O₅ 402.1467, found 402.1473.

2-Ethyl-3-methoxy-1-azulenyl Ethanoate (17a). To a cold (0 °C) stirred solution of azulenone acid chloride 6d (0.040 g, 0.15 mmol) in CH₂Cl₂ (5 mL) was added acetic anhydride (0.078 g, 0.75 mmol), the mixture was stirred for 20 min, and DMAP (0.021 g, 0.18 mmol) was added in one portion. The reaction mixture quickly turned deep blue in color and was stirred for 3 h. Solvent was removed in vacuo, and products were purified by chromatography (SiO₂, $R_f = 0.20$ in 90/10 hexanes/ethyl acetate) to give 17a (0.28 g, 77%) as a blue oil: ¹H NMR (CDCl₃, 300 MHz): δ 1.30 (t, 3H, J = 7.5 Hz), 2.44 (s, 3H), 2.83 (q, 2H, J = 7. 5 Hz), 3.99 (s, 3H), 6.86 (t, 1H, J= 9.6 Hz), 6.90 (t, 1H, J = 9.3 Hz), 7.41 (t, 1H, J = 9.9 Hz), 7.86 (t, 1H, J = 9.6 Hz), 8.21 (t, 1H, J = 9.6 Hz); ¹³C NMR (CDCl₃, 75.44 MHz): δ 13.46, 18.38, 20.64, 63.51, 120.67, 121.02, 122.15, 123.54, 130.71, 131.72, 132.70, 135.80, 137.76, 143.65, 169.93; IR (neat) 1767 (s), 1575 (m), 1198 (s) cm⁻¹; UV [EtOH, λ_{max} (log ϵ)] 240 (4.24), 284 (4.80), 336 (3.50), and 352 (3.67) nm. Anal. Calcd for C₁₅H₁₆O₃: C, 73.75; H, 6.60. Found: C, 74.02; H, 6.66.

3-Ethoxy-1-azulenyl Ethanoate (17b). To a cold (0 °C) stirred solution of chloroketene 5d (0.098 g, 1.08 mmol) in CH2-Cl₂ (15 mL) was added ethoxyacetylene (0.075 mL of a 50 wt %/wt solution in hexanes, 5.59 mmol) in CH₂Cl₂ (5 mL) over 30 min, and the mixture was stirred for 6 h. The reaction was cooled to 0 °C and acetic anhydride (2.71 mmol, 0.276 g, 5 equiv) added. After a few minutes, DMAP (0.55 mmol, 0.068 g, 1.01 equiv) was added in one portion, and the mixture turned bright blue. This was stirred for an additional 2 h, adsorbed onto SiO₂, and chromatographed (SiO₂, 90/10 hexanes/ethyl acetate) to provide 17b as a blue oil ($R_f = 0.25$ in 90/10 hexanes/ethyl acetate, 0.050 g, 40%): ¹H NMR (CDCl3, 300 MHz) δ 1.47 (t, 3H, J = 7.0 Hz), 2.38 (s, 3H), 4.20 (q, 2H, J = 7.0 Hz), 6.60 (t, 1H, J = 9.9 Hz), 6.67 (t, 1H, J = 9.6 Hz), 7.28 (t, 1H, J = 9.9 Hz), 7.90 (d, 1H, J = 9.9 Hz), 8.16 (d, 1H, J = 9.0 Hz); ¹³C NMR (CDCl₃, 75.44 MHz) δ 14.98, 21.02, 66.44, 109.34, 118.83, 118.92, 119.56, 121.69, 132.75, 133.80, 134.25, 139.91, 145.26, 169.23; IR (CDCl₃) 1755 (s), 1581 (s), 1514 (s), 1374 (s), 1358 (s), 1219 (s), 1207 (s) cm⁻¹; UV [EtOH, $\lambda_{\max} (\log \epsilon)$ 236 (4.06), 286 (4.51), 360 (3.56), 378 (3.51). Anal. Calcd for C₁₄H₁₄O₃: C, 73.03; H, 6.13. Found: C, 73.10; H, 5.82

2-Ethyl-3-methoxy-1-azulenyl Methyl Carbonate (15). To a cold (0 °C) stirred solution of azulenone **6d** (0.100 g, 0.05 mmol) in CH_2Cl_2 (5 mL) were added ethyl diisopropylamine (0.05 mmol, 0.071 g, 0.095 mL, 1 equiv) and DMAP (0.002 mmol, 0.013 g, 0.2 equiv). This was stirred for 10 min followed by the addition of MeOH (0.031 mL, 0.024 g, 0.07 mmol). The reaction was stirred for 12 h, and the volatiles were then removed in vacuo. The resultant blue oil was subjected to column chromatography ($R_f = 0.25$ in 70/30 hexanes/ ethyl acetate) to give **15** as a blue oil (0.015 g, 10%): ¹H NMR (CDCl₃, 300 MHz) δ 1.30 (t, 3H, J = 7.5 Hz), 2.86 (q, 2H, J = 7.5 Hz), 3.95 (s, 3H), 3.98 (s, 3H), 6.91 (t, 1H, J = 9.8 Hz), 6.92 (t, 1H, J = 9.8 Hz), 7.44 (t, 1H, J = 10.0 Hz), 7.96 (d, 1H, J = 9.5 Hz), 8.21 (d, 1H, J = 9.4 Hz).

Methyl (±)-(3aa,8ab)- and (±)-(3aa,8aa)-2-Ethyl-1,3a,4,5,6,7,8,8a-octahydro-3-methoxy-1-oxo-8a-azulenecarboxylate (18a and 19a). Methyl ester 14a (0.165 g, 0.66 mmol) was dissolved in ethanol, and 10% Pd/C was added to this solution. The reaction flask was fitted with a balloon filled with H₂, and the mixture was stirred for 24 h. The mixture was filtered through Celite and the solvent was removed in vacuo to provide crude diastereomers (0.150 g, crude 2:1). Chromatographic purification (SiO₂, 70/30 hexanes/ethyl acetate) provided analytical samples of each. Major 18a: ¹H NMR (CDCl₃, 500 MHz) δ 1.01 (t, 3H, J = 7.5 Hz), 1.05–1.09 (m, 1H), 1.25 (ddd, J = 1H, 13.8, 12.0, 5.5 Hz), 1.36 (ddd, 1H, J = 12.5, 12.0, 12.0 Hz), 1.62-1.69 (m, 2H), 1.81-1.97 (m, 3H), 1.93–1.96 (m, 1H), 2.35 (q, 2H, J = 7.5 Hz,), 2.70 (ddd, J =1H, 13.8, 5.0, 3.0 Hz), 2.98 (dd, 1H, J = 11.5, 6.0 Hz), 3.65 (s, 3H), 4.13 (s, 3H); 13 C NMR (CDCl₃, 75.44 MHz) δ 14.96, 16.33, 23.28, 24.90, 26.11, 27.77, 48.75, 52.23, 58.80, 63.66, 115.98, 170.09, 184.04, 200.91; IR (CDCl₃) 1733 (w), 1608 (s), 1347 (m) cm⁻¹. Anal. Calcd for C₁₅H₂₂O₄: C, 67.64; H, 8.32. Found: C, 67.04; H, 8.05. Minor 19a: ¹H NMR (300 MHz, CDCl₃) δ 1.01 (t, 3H, J = 7.5 Hz), 1.40–1.57 (m, 7H), 1.84– 1.95 (m, 2H), 2.30 (q, 2H, J = 7.5 Hz), 2.33-2.39 (m, 1H), 3.42 (dd, J = 1H, J = 9.15, 2.7 Hz), 3.68 (s, 3H), 4.09 (s, 3H); ¹³C NMR (CDCl₃, 75.44 MHz) δ 14.35, 15.78, 25.30, 27.15, 28.81, 30.62, 31.22, 48.13, 52.75, 57.99, 63.33, 118.87, 172.65, 185.62, 201.75; IR (CDCl₃) 1734 (w), 1616 (s) $cm^{-1}.\,$ Anal. Calcd for C₁₅H₂₂O₄: C, 67.64; H, 8.32. Found: C, 67.07; H, 8.16.

Methyl (\pm)-(3a α ,8a β)- and (\pm)-(3a α ,8a α)-(\pm)-3-Ethoxy-1,3a,4,5,6,7,8,8a-octahydro-1-oxo-8a-azulenecarboxy late (18b and 19b). Methyl ester 14d (0.060 g, 0.2 mmol) was hydrogenated according to the same procedure as for 14a. The products (~3:1 ratio of diastereomers by ¹H NMR analysis of the crude product mixture) were purified by MPLC (SiO₂, 70:30 hexanes/ethyl acetate) to give a fraction containing a 2.5:1 ratio of major/minor diastereomers and a later fraction containing a 9:1 ratio of major/minor diastereomers (60 mg total recovery, 99% yield). Major 18b: ¹H NMR (500 MHz, CDCl₃) δ 1.08–1.16 (m, 1H), 1.29–1.39 (m, 3H), 1.43 (t, J = 7.5 Hz, 3H), 1.61-1.66 (m, 1H), 1.67-1.71 (m, 1H), 1.83-1.94 (m, 2H), 2.01-2.10 (m, 1H), 2.71 (ddd, 1H, J = 14.0, 5.0, 3.5 Hz), 3.12 (ddd, 1H), J = 11.7, 5.8, 1.5 Hz), 3.70 (s, 3H), 4.04-4.11 (m, 2H), 5.18 (d, J = 1.5 Hz, 1H); ¹³C NMR (125.69 Hz, CDCl₃) & 14.05, 22.59, 24.87, 26.00, 27.80, 31.94, 49.43, 52.40, 64.75, 68.00, 100.56, 170.01, 191.57, 199.99; IR (CDCl₃) 1733 (s), 1688 (s), 1583 (s) cm⁻¹. Anal. Calcd for C₁₄H₂₀O₄: C, 66.64; H, 7.99. Found: C, 66.78; H, 7.76. Minor 19b: ¹H NMR (500 MHz, CDCl₃) δ 1.43 (t, J = 7.0 Hz, 3H), 1.60–2.01 (m, 9H), 2.27-2.32 (m, 1H), 3.53 (ddd, 1H, J = 9.5, 3.5, 1.0 Hz), 3.71 (s, 3H), 4.04-4.14 (m, 2H), 5.25 (d, J = 1.5 Hz, 1H).

Acknowledgment. This work was supported by an NSF-Presidential Faculty Fellowship to R.G.B. (CHE 9350393). We thank Dr. Victor G. Young, Jr. (University of Minnesota) for the X-ray crystallographic analysis.

JO9719315